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MObjects—A Novel Method for the Visualization and Interactive
Exploration of Defects in Industrial XCT Data

Andreas Reh, Christian Gusenbauer, Johann Kastner, Eduard Gröller, and Christoph Heinzl

Fig. 1. From a set of individual objects (I) a MObject is calculated. MObjects are visualized by transfer functions based on the
probability of each voxel of belonging to the MObject (1 and 2). The MObject cut-through (C) shows areas with high probability (H) in
the center. Medium (M) and low (L) probabilities represent the uncertainty cloud (U) showing outliers of individual objects.

Abstract—This paper describes an advanced visualization method for the analysis of defects in industrial 3D X-Ray Computed
Tomography (XCT) data. We present a novel way to explore a high number of individual objects in a dataset, e.g., pores, inclusions,
particles, fibers, and cracks demonstrated on the special application area of pore extraction in carbon fiber reinforced polymers
(CFRP). After calculating the individual object properties volume, dimensions and shape factors, all objects are clustered into a mean
object (MObject). The resulting MObject parameter space can be explored interactively. To do so, we introduce the visualization of
mean object sets (MObject Sets) in a radial and a parallel arrangement. Each MObject may be split up into sub-classes by selecting a
specific property, e.g., volume or shape factor, and the desired number of classes. Applying this interactive selection iteratively leads
to the intended classifications and visualizations of MObjects along the selected analysis path. Hereby the given different scaling
factors of the MObjects down the analysis path are visualized through a visual linking approach. Furthermore the representative
MObjects are exported as volumetric datasets to serve as input for successive calculations and simulations. In the field of porosity
determination in CFRP non-destructive testing practitioners use representative MObjects to improve ultrasonic calibration curves.
Representative pores also serve as input for heat conduction simulations in active thermography. For a fast overview of the pore
properties in a dataset we propose a local MObjects visualization in combination with a color-coded homogeneity visualization of
cells. The advantages of our novel approach are demonstrated using real world CFRP specimens. The results were evaluated
through a questionnaire in order to determine the practicality of the MObjects visualization as a supportive tool for domain specialists.

Index Terms—3D X-ray computed tomography, carbon fiber reinforced polymers, porosity, parameter space analysis, MObjects

1 INTRODUCTION AND MOTIVATION

Industrial research is continuously increasing efforts in designing new-
tailored light-weight materials in order to meet the high demands re-
garding efficiency, environment, safety as well as comfort. Especially
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in the aeronautics industry a high demand for advanced composite ma-
terials is observable. Aircrafts of the future will be made of more
than 50 % of these novel composite materials. Carbon fiber reinforced
polymers (CFRPs) are currently considered as the most promising can-
didate since this material is outperforming the majority of conven-
tional materials. As a result of the manufacturing process this material
tends to have pores inside [25]. Pores in the material are typically in-
clusions of air. As they have an impact on the mechanical properties of
the component, their determination and evaluation is an important task
in quality control and a particular challenge for non-destructive testing
(NDT) practitioners. Besides the characterization of individual pores,
their spatial distribution in the tested component is a relevant factor.
For example, a high concentration of pores in certain regions leads to
different material characteristics as compared to a homogenous distri-
bution of the pores.

The current state-of-the-art method for non-destructive porosity de-
termination in aeronautics is ultrasonic testing. Characterization using
ultrasonics is required by various aeronautic and automotive standards.
The porosity is estimated from ultrasonic velocity and attenuation of
sound waves using a calibration curve which is based on the contained



Fig. 2. Illustration of the MObject calculation showing pores of a CFRP
dataset. (1) First the individual pores are spatially aligned according to
their centers. (2) Second the MObject is calculated by summing up the
voxels.

pores. Although the pores and their shape factors are strongly re-
lated to the manufacturing process, the same calibration curve is used
for components from diverse manufacturing operations. This leads
to inaccurate results. Active thermography is a complementary NDT
method for porosity determination in CFRP components. For active
thermography heat is induced with flashes of light and the propagation
of the surface temperature is measured. As the heat propagation de-
pends on the thermal diffusivity of the component, the heat conduction
model is fundamental for the accuracy of the generated results [20].
The model is based on simulations, in which the sizes and shape fac-
tors of the pores play an important role, although they are not exactly
known.

To avoid these drawbacks and to support NDT practitioners, we
apply 3D X-Ray Computed Tomography (XCT). It is an NDT method
with an increasing importance in the field of aeronautics. With XCT
the tested component is placed on a rotary plate between an X-ray
source and a detector. For a series of angular positions, 2D projection
images are acquired and a 3D volumetric dataset is reconstructed. Due
to the high spatial resolution, industrial XCT allows to detect a high
number of pores (individual objects) inside. At first glance these pores
have similar shapes and it is a difficult and tedious task to evaluate the
data by identifying representative structures of interest in the dataset.

As a solution to this problem we introduce mean objects (MOb-
jects). The pores in the 3D dataset are examined individually (see Fig-
ure 2 (1)). To compute the MObject, the pores are spatially aligned ac-
cording to their centers. The value of each voxel in the MObject is the
sum of individual pores that overlap it (see Figure 2 (2)). By normal-
izing the MObject to 1, each voxel holds the probability of belonging
to the MObject. Figure 1 illustrates our novel visualization approach
showing individual objects (I) and the visualization with an illustrative
MObject cut-through (C). A MObject is visualized by transfer func-
tions based on the probability of each voxel in the MObject dataset (1
and 2). Areas with a high probability (H) represent the MObject core
in the center. The surrounding medium and low probabilities (M and
L) represent an uncertainty cloud (U) and correspond to outliers of in-
dividual objects. The calculated MObject of the whole dataset is then
explored by a decomposition using interactive selection. The resulting
set of MObjects is called MObject Set. With the help of the MObject
Sets it is now possible to find representative MObjects in the dataset.
For our specific application of CFRP analysis representative MObjects
are structures of interest in the dataset. For example representative
mean pores in a CFRP component are nodular and disc-shaped pores
within the epoxy resin as well as long and thin micro pores in the fiber
bundles. Although our approach can be used for all kinds of defects
in material sciences, e.g., pores, inclusions, particles, fibers and even
cracks, we will focus in this work on the evaluation of pores.

2 TASKS AND CONTRIBUTIONS

The previously introduced problem descriptions and their demands re-
garding material sciences lead us to the following tasks for the visual-
ization and exploration of MObjects:

• MObjects Visualization (Task 1): A non-destructive testing
(NDT) practitioner analyses visual representations of features or
objects of interest inside a CFRP dataset regarding their individ-
ual properties, e.g., volume, dimensions, or shape factors. Due
to the high number of pores the calculation and visualization of
MObjects is the most important task.

• Local MObjects Visualization (Task 2): Besides individual
pore properties, the spatial distribution of the pores is an im-
portant property of the investigated specimen. Non-destructive
testing practitioners need a fast overview of the pore homogene-
ity. To achieve this goal, the dataset is divided into cells. For
each cell a local MObject is calculated and visualized.

• MObjects Exploration (Task 3): Ultrasonic testing practition-
ers and active thermography experts are searching for MObjects
as representatives of the structures of interest in the dataset. The
MObjects are needed to improve the ultrasonic calibration curve
and the simulations of the thermal diffusivity model. Therefore
the MObject of a CFRP dataset is explored interactively.

In this paper we employ XCT to determine and visualize pores in
CFRP specimens. MObjects of the segmented pores are calculated
and visualized. To accomplish Task 1 - Task 3 visualization methods
for the interactive exploration of MObjects are introduced. The main
contributions of our work are:

• MObjects Calculation and Visualization: We calculate MOb-
jects by clustering a set of individual pores. As the calculation
produces probabilities for each voxel, we visualize an uncer-
tainty cloud using transfer functions.

• Homogeneity Visualization using Local MObjects: For a fast
homogeneity overview of the specimen we divide the dataset into
regular sub-volumes. For each of these volumes we calculate a
local MObject. We extend the homogeneity visualization with a
color-coding of the sub-volumes regarding their individual prop-
erties.

• Interactive Exploration of MObjects: For the interactive ex-
ploration and visualization of pores in a CFRP dataset, we in-
troduce two methods. In a beginners mode the MObjects are
arranged in a radial design. All possible combinations of the
user-defined properties are calculated and visualized. In the ex-
pert mode, the MObjects are arranged in parallel. They are con-
structed interactively from one level to the next in order to allow
an in-depth exploration of the dataset. The resulting representa-
tive MObjects can be exported as volumetric datasets to serve as
input for ultrasonic calibrations and active thermography simu-
lations. Each voxel holds the probability of the MObject mem-
bership.

3 RELATED WORK

In our previous work [23] we introduced a drill-down approach to ex-
plore pores in a CFRP dataset. The main focus of this work was the
determination of the quantitative porosity and the comparison with ex-
isting reference methods like ultrasonic testing, active thermography,
and acid digestion. A fast porosity overview with the porosity maps
visualization and an individual pore visualization with parallel coordi-
nates was presented and showed satisfying results. However porosity
in CFRP is still an interesting and important topic of research. Due to
the possible high number of pores in the datasets, occlusions of pores
may lead to evaluation problems using an individual pore visualiza-
tion. We found out that analyzing the pores individually is insufficient
in certain evaluation scenarios, e.g., if the mean characteristics of the
pores are needed. In this paper, we developed the new MObjects ap-
proach which gives the user a fast visual overview of the average pores
in the dataset. In the following sections we review the related work for
our MObjects visualization and exploration pipeline.



3.1 Segmentation
The segmentation of the individual pores is an essential task. A survey
on thresholding techniques by Sezgin and Sankur [24] shows the wide
range of approaches and applications. All of these methods assign an
object membership based on a density threshold, where no neighbor-
hood information is taken into account. As we showed in our previous
work [23] Otsu’s thresholding technique [21] leads to satisfying re-
sults for industrial XCT data of CFRP specimens. It is an automatic
threshold-selection method for bimodal histograms. The histogram is
divided into two classes minimizing the intra-class variance and max-
imizing the inter-class variance. Thus the separability of the resulting
classes in gray levels is maximized. As segmentation techniques are
exchangeable in the presented workflow and not considered as core of
this work, this area is not considered in more detail.

3.2 Parameter Space Analysis
The resulting set of segmented pores together with their properties like
the volume, dimensions, and shape factors make up a new parameter
space, which has to be explored (MObjects Exploration - Task 3). A
broad range of methods and applications for parameter space analysis
exists. Design galleries by Marks et al. [19] present an interface with
an automatically generated selection of different graphics or anima-
tions. These can be produced by varying the input parameters, e.g.,
opacity and color transfer functions for volume rendering. Ma [17]
introduces Image Graphs, where the nodes in the graphs show result
images. Each edge depicts the change of the rendering parameters be-
tween its connected nodes. Changes in the rendering parameters prop-
agate through the graph. Bruckner and Möller [7] developed a system
to assist graphics artists in generating special effects, e.g., smoke or ex-
plosions. Their visual exploration approach of the parameter spaces al-
lows the user to find the appropriate parameters for the desired results.
Torsney-Weir et al. [26] introduced Tuner, a system for parameter find-
ing in image segmentation. Tuner systematically explores the parame-
ter space in two stages. After sampling the parameter space, a statisti-
cal model for the estimation of the segmentation algorithm’s response
is applied. Based on this information the user can navigate through the
parameter space to find areas with high response values. Amirkhanov
et al. [2] presented a tool for the visual optimality and stability anal-
ysis of 3DCT specimen placements. For parameter space analysis a
stability widget based on penetration-length calculation, radon-space
analysis as well as placement-stability analysis is used. Another ap-
proach by Bruckner et al. [8] is realized in the BrainGazer software.
The system is used for the exploration and analysis of neural circuits.
Visual queries based on semantic and spatial relationships are applied
to a database of fruit-fly brains. Berger et al. [5] presented an interac-
tive approach to analyze a sampled parameter space. Other interesting
papers concerning our work are available as well [28], [27] and [3].

3.3 Clustering
By calculating MObjects, we identify and group similar individual
objects with respect to one of their properties. Therefore a cluster
algorithm is used. Xu published a detailed survey on clustering algo-
rithms [29]. We let the user decide on the number of clusters, e.g., a
norm specifies the number of partitions which have to be made in an
evaluation scenario. As the clustering algorithm is easily replaceable,
simple k-means is taken for our approach of clustering individual ob-
jects. Clustering itself is considered to be out of scope for this work
and is not discussed in more detail.

3.4 Hierarchical Visualization
The calculation of MObjects is based on the composition and de-
composition of mean and individual objects. This leads us to hier-
archical visualizations for the interactive exploration of the MObjects
(MObjects Exploration - Task 3). A combination of hierarchy visu-
alization and scientific visualization was presented by Balabanian et
al. [4]. Their method integrates visualizations for hierarchically orga-
nized volumetric datasets. A graph shows the hierarchy and the nodes
display the corresponding 3D volumetric data. Brambilla et al. [6]
introduced a hierarchical splitting scheme for the analysis of integral

surfaces. At each hierarchy level the cuts are chosen according to a
surface complexity metric. Ip et al. [13] partition the histogram of a
volumetric dataset into an exploration hierarchy using a normalized-
cut multilevel segmentation approach. Inspired by these techniques,
we introduce our MObject Set visualization. After a decomposition of
the dataset’s MObject, the user is able to explore the data in a graph,
where the nodes show 3D representations of the MObjects.

3.5 Uncertainty Visualization
We calculate a new volumetric MObject dataset by aggregating indi-
vidual objects of one cluster. Each voxel holds the probability of be-
longing to the newly generated MObject. These probabilities as well
as the regions with elevated uncertainty are visualized (MObjects Visu-
alization - Task 1). Kniss et al. [14] present an approach for the interac-
tive exploration of uncertainty including a risk and decision analysis.
They render the results of the risk analysis into a unified probabilistic
data space. As MObjects are aggregated from all considered individ-
ual objects, the approach by Kniss et al. [14] is not suitable for our
visualization. Point-based probabilistic surfaces were introduced by
Grigoryan and Rheingans [10]. They visualize surfaces with uncer-
tainties using points as display primitives. Although their approach
is useful for visualizing uncertainty on surfaces, we can not apply it
to our data. Fout and Ma [9] present fuzzy volume rendering. By
computing the posteriori uncertainty they provide a verifiable volume
rendering. Heinzl et al. [11] compute a probability volume of multi-
material components using a statistical analysis. Similarly we provide
insight into the MObjects’ data to show the core and the outliers. We
also use transfer functions emphasizing a user-defined border of prob-
ability. They are suitable for visualizing the a priori-based uncertainty
of an MObject.

3.6 Comparative Visualization
The issue of visualizing the pore homogeneity in the dataset (Local
MObjects Visualization - Task 2) leads us to comparative visualization.
Malik et al. [18] refer to a wide range of comparative visualization
approaches. Additionally they propose a base tile pattern for a multi-
image view for comparative visualization, which is an extension of
the checkerboard-pattern approach and attribute blocks. Malik et al.
compare 2D slices of volumetric datasets with different measurement
parameters. Ahrens et al. [1] visualize differences between scientific
simulations. These methods are not applicable to our segmented pores
data. We divide the dataset into cells and calculate local MObjects for
each cell. Furthermore we add a homogeneity visualization, where we
color-code the cells based on the deviation of the local average from
the global average.

3.7 Visualization of Multivariate Data
Parallel coordinates introduced by Inselberg [12] are a common visual-
ization approach for displaying and filtering multivariate data. Kosara
et al. [15] extended parallel coordinates and presented parallel sets for
dealing with categorical data. Instead of individual data points, they
show data frequencies between the axes and visualize the relations be-
tween categories. StratomeX by Lex et al. [16] was inspired by parallel
sets, where datasets of genomic data are represented as columns and
subtypes as bricks in the columns. Our MObject Set visualization in
parallel alignment was inspired by these techniques (MObjects Explo-
ration - Task 3). Parallel coordinates can serve as classifiers for the
selection of individual pores and parallel sets share the idea of clus-
tered objects. Due to the usage of categories, both approaches are not
applicable to volumetric datasets. They do not visualize the spatial
relationship between as well as the appearance of the objects.

4 MOBJECTS VISUALIZATION AND EXPLORATION PIPELINE

In our work we want to identify representative structures of interest
in an XCT dataset, e.g., pores in a CFRP component. We propose a
pipeline for the visualization and interactive exploration of MObjects
which is illustrated in Figure 3. In the data acquisition stage (1) 3D X-
Ray Computed Tomography (XCT) data is generated (see Section 4.1).
On the resulting volumetric dataset pre-processing steps (2), described



Fig. 3. Pipeline for the visualization and interactive exploration of MObjects in a dataset. The main pipeline is colored in blue, whereas the detailed
steps are shown in gray.

in Section 4.2, are performed to calculate the resulting global MObject
of the dataset. This MObject is considered as mean pore and represents
the aggregation of all pores in the component. For further visualization
of the MObject we propose two methods. In our first approach, the
global MObjects visualization (3), the global MObject serves as input
for further exploration. For a fast overview of the dataset we suggest a
local MObjects visualization (4). The dataset is divided into cells and
for each cell a local MObject is calculated and shown in combination
with a color-coded homogeneity visualization. Through interactive
selection (5) the subsequent exploration starts with one of the local
MObjects instead of the global one.

All the individual objects in the MObject of interest are then clus-
tered in the MObject Set calculation (6). The parent MObject is further
subdivided into new child MObjects based on one of their calculated
properties. For example the parent MObject is classified into two child
MObjects based on the shape factors of the pores. The first MObject
only contains nodular pores, whereas the second one consists of long
and thin pores. The user is then able to interact with the resulting
MObject Set visualization (7). Through visual linking (8) or interac-
tive selection (9) an iterative calculation and visualization of the MOb-
ject Sets will be triggered upon each major change in the classification.
By selecting a MObject (A) in a MObject Set (B) a new MObject Set
(C) consisting of new child MObjects can be calculated from the se-
lected parent MObject (A).

4.1 Data Acquisition

In this work, we use carbon fiber reinforced polymers (CFRP) speci-
mens made of preimpregnated carbon fibers and epoxy resin. For the
investigations plates with a size of 17 x 20 x 1 mm3 were used. The
voxel size of the datasets was 10.5 µm. The XCT scans were per-
formed on a GE Phoenix|xray nanotom XCT system with a 180 kV
nano focus tube. A tube voltage of 60 kV, a measurement current
of 320 µA, and 500 ms integration time at the detector were used as
scan parameters. Over-segmentation in the middle of the specimens
may occur due to gray value modifications caused by beam hardening
during the measurement. Therefore a beam hardening correction was
applied during the reconstruction.

4.2 Pre-processing
Due to ambient noise in the scanned datasets, we apply anisotropic
diffusion as described by Perona and Malik [22] for filtering the data.
Anisotropic diffusion smoothes homogenous regions while preserving
the edges. We use five iterations with a conductance of one and a
time step of 0.0625 seconds. The segmentation of pores is done with
the automatic threshold selection method for bimodal histograms by
Otsu [21]. For the individual property calculation the objects are la-
beled after the segmentation by a connected-components filter using
26-connectivity neighborhoods. With the labeled objects we proceed
through an individual property calculation stage which is the basis for
our MObjects determination. A pore consists of a set of voxels within
a regular volumetric grid. To enable interactive exploration and clas-
sification of objects the following properties for each individual pore
are calculated:

• Pore volume Vi: The volume Vi of a pore i is the sum of all
voxels in the dataset with the same label.

• Dimensions ai,bi,ci: To calculate the extent of the pore along
the x, y and z coordinate axes we perform the calculation on the
discretized pore. For the extent along the x axis we determine
the two voxels with minimal and maximal x coordinate values
respectively. The extents ai,bi,ci are then the differences be-
tween the maximal and minimal coordinates along the x, y and z
axes of pore i.

• Shape factor Fi: The shape factor Fi of a pore i is defined as the
ratio between the pore surface Si and the pore volume Vi.

• Directional shape factors F(x/z)i
,F(y/z)i

,F(x/y)i
: Mayr et al. [20]

define the shape factors of typical ellipsoidal pores for each di-
rection in space as follows: F(x/z)i

= ai/ci,F(y/z)i
= bi/ci and

F(x/y)i
= ai/bi.

On the basis of these properties a MObject of the whole dataset is
calculated in order to explore and visualize representative MObjects in
a dataset.



5 VISUALIZATION

We introduce novel methods for the visualization and interactive ex-
ploration of MObjects which are based on a set of individual objects in
a dataset. Besides the calculation and visualization of MObjects (see
Section 5.1) we propose a homogeneity visualization of the dataset. It
uses local MObjects and a color-coding of the grid-based sub-volumes.
The approach is based on the deviation of average individual prop-
erties, e.g., the average pore volume in a cell (see Section 5.2). To
explore MObjects we present two visualization approaches in Sec-
tion 5.3 which use MObject Sets in radial and parallel arrangement.
Furthermore we discuss interaction techniques for these two methods
including visual linking.

5.1 MObject Visualization
For the visualization of a single MObject we introduce an uncertainty
cloud surrounding the MObject core (see Section 5.1.1). We used
transfer functions which are described in more detail in Section 5.1.2.
To calculate a MObject all individual objects are spatially aligned by
their centers. The center position can be calculated from the dimen-
sions ai,bi,ci of the individual objects or the barycenter of each indi-
vidual object can be used. Both methods showed similar results for
pores in CFRP datasets as pores typically have nodular, disc, or long
and elongated shapes. In order to avoid additional calculations, we
decided to use the dimension-based approach. When transferring the
MObjects idea to other application areas, the centroid calculation has
to be reconsidered according to the specific requirements. Although it
is possible to rotate and register all individual objects in the calcula-
tion, we align them with their original orientation. This transformation
without a rotation is important in the specific application area of CFRP
analysis which we address in this work. Due to the layer structure of
the material the MObject should clearly visualize the different orienta-
tions of the individual objects. For each voxel in the individual object
dataset, the distances ∆x,∆y and ∆z to the center are calculated. Af-
ter the distance calculation for one voxel, the corresponding voxel in
the MObject with the same distances ∆x,∆y and ∆z to the center of
the MObject is incremented. This step is done for each voxel of each
individual object. To get the corresponding probabilities the resulting
MObject dataset is normalized to 1.

5.1.1 Uncertainty Cloud

A MObject is a volumetric dataset, where each voxel holds the prob-
ability of belonging to the MObject. This information has to be vi-
sualized accordingly. We visualize an uncertainty cloud surrounding
the MObject’s core. Uncertainty cloud and core are based on the
stored probabilities. A high probability at a specific position means

Fig. 4. (1) MObject showing a small uncertainty cloud using a low un-
certainty filter σ = 0.15. (2) A high uncertainty filter σ = 0.9 leads to an
uncertainty cloud showing the MObject’s core and outliers.

Fig. 5. Based on the partitioning (1) of the volume into cells, local MOb-
jects (2) and a color-coded homogeneity visualization (3) is shown to
the user. The color-coding illustrates the deviation of the average cell
properties from the global average property. Red indicates the highest
positive deviation, whereas blue shows the highest negative deviation.

that nearly all of the individual objects which were summed up to the
MObject, include this location. In Figure 1 the uncertainty cloud (U) is
illustrated. The probability in the core of the MObject is typically high
(H). As the contribution of outliers to the MObject is low, they have a
medium (M) or low (L) probability of belonging to the MObject.

5.1.2 Transfer Function Design

The uncertainty cloud is visualized using transfer functions. We apply
colors for high probabilities (blue) to medium (yellow) and low proba-
bilities (gray). Yellow-grey thus shows the outliers (see Figure 4). The
step between high (blue) and medium (yellow) probabilities shows the
membership of belonging either to the core or the outliers of the MOb-
ject. For the interactive visualization and adaptability to different ap-
plications, the user steers this visualization by an uncertainty filter σ .
Figure 4 shows how the gray-yellow-blue gradient is shifted in the
transfer function based on σ . Setting a low uncertainty filter, leads to
a small uncertainty cloud and a visualization strongly representing the
surface of the MObject (1). In the case of using a high uncertainty
filter, one can clearly determine the core of the MObject and see the
surrounding outliers (2). To emphasize the uncertainty cloud, we ap-
ply a lower opacity value at the position of σ in the transfer function.

5.2 Local MObjects Visualization
Pore homogeneity is an important criterion in material sciences. We
already covered this topic with our porosity maps visualizing the
porosity in a CFRP specimen [23]. As the homogeneity of the dif-
ferent pore properties is also helpful to find interesting regions for a
further detailed analysis, this information has to be visualized in an
easy to understand and intuitive way. We propose a homogeneity vi-
sualization using local MObjects and a comparative homogeneity vi-
sualization with color-coded cells. Figure 5 describes our approach
in more detail. First the volumetric dataset is partitioned into sub-
volumes (1). We refer to them as cells. The cell size depends on the
biggest pore extents in the dataset as it should fit in a cell without over-
lapping. Based on this partitioning we implement two visualizations
to convey homogeneity to the user. In our first method we visualize lo-
cal MObjects (2). For each cell a MObject is calculated and centered
in the cell. All pores whose centers are inside the cell are considered.
The same transfer function is used for all local MObjects.

In our second approach the average pore properties and their devi-
ations to the global average properties of the whole dataset are calcu-



Fig. 6. Illustration of the MObject Set calculation showing pores of a
CFRP dataset. All individual pores of the parent MObject (1) are divided
into two clusters A (2) and B (3). The resulting child MObjects (4 and 5)
make up a new MObject Set (6).

lated. The user is able to guide this comparative homogeneity visual-
ization by selecting a property. Each cell is colored according to its
deviation from the selected global property (3). For color-coding the
cells we apply a diverging colormap from blue over yellow to red to
show the negative and positive deviation of the average cell properties
from the global average property of the specimen.

5.3 MObject Set Visualization

For the interactive exploration of MObjects in a dataset we provide a
visual representation to the user. A parent MObject can be divided into
a set of child MObjects which together make up a new MObject Set.
All individual objects which belong to the parent MObject are clus-
tered based on one of the calculated properties. For each cluster a new
child MObject is calculated. The child MObjects together form a new
MObject Set. The MObject Set may be explored interactively with
a recursive selection and decomposition of the included child MOb-
jects. Figure 6 illustrates this process using individual pores of a CFRP
dataset. The parent MObject (1) is split up into the contained individ-
ual objects. First, these individual objects are clustered according to
their shape factors into two clusters A (2) and B (3). Second, all in-

dividual objects in a cluster are aggregated to new child MObjects (4
and 5). These child MObjects make up a new MObject Set (6). For
the clustering we provide two possibilities to the user:

• Automatic Clustering: The automatic clustering mode uses k-
means clustering to assign the individual objects to classes. All
the individual objects are classified into k clusters where each
individual object belongs to the cluster with the closest mean.
The user decides on the number k of clusters and which object
property should be used for clustering.

• User-defined Clustering: If the user wants to select the cluster
centers by himself, it is possible to override the automatic clus-
tering. One reason may be that specific domain expert knowl-
edge from previous analyses or a norm specifies the clustering
for a certain property. In this case the user is able to modify the
clustering done by the automatic approach using a simple dialog.

After clustering according to a certain property, a child MObject
is calculated for each cluster out of all individual objects that belong
to it. For the MObject Set visualization we propose then two modes.
Section 5.3.1 describes the beginners mode where we introduce the
radial MObject Set visualization. The expert mode with the parallel
MObject Set visualization is described in Section 5.3.2.

5.3.1 Radial MObject Set Visualization (Beginners Mode)
For inexperienced users, setting the number of classes for clustering
and specifying the sequence in which the properties shall be explored
can be a challenging task. To give a better overview of the data and
the resulting MObjects we provide a beginners mode for an interac-
tive exploration of MObjects. Figure 7 (A) illustrates the MObject
Set visualization in a radial arrangement. In most evaluation scenarios
two properties are sufficient (e.g., pore volume and shape factor). The
user selects the number of classes and the desired properties for the
MObject Set calculations. The radial design allows to render all possi-
ble combinations between the properties (A-1) and (A-2) and not only
one at a time (see parallel MObject Set visualization in Section 5.3.2).
Based on this visualization, parameters for the expert mode can be
found more easily. It further reduces the error rate of selecting unde-
sired MObjects while exploring the data. Through interactive selection
(A-3) the user is able to switch to the expert mode. There the MObject
Sets (A-4) and (A-5) are displayed in parallel arrangement, according
to the previously selected path.

5.3.2 Parallel MObject Set Visualization (Expert Mode)
The before described radial MObject Set visualization (see Sec-
tion 5.3.1) leads to a fixed classification of the individual objects. Ex-
perienced users want to cluster the pores based on their properties in a

Fig. 7. (A) The radial MObject Set visualization shows all possible combinations between the properties (A-1 and A-2). (A-3) The user is able to
switch to parallel alignment which shows MObject Sets (A-4 and A-5) along the selected path. (B) Parallel MObject Set visualization for a step by
step exploration. MObject Sets (B-1, B-3 and B-5) are calculated and visualized after interactive selections (B-2 and B-4).



sequence that best fits their needs to extract the MObjects of interest.
This sequence of properties may be different from case to case. To
support this situation we present the parallel MObject Set visualiza-
tion which is illustrated in Figure 7 (B). MObject Sets are calculated
and visualized after interactive selections. All individual objects of
the dataset are clustered based on a property and a user-defined num-
ber of clusters, e.g., three shape factor classes. The resulting MOb-
jects are shown in a MObject Set (B-1). Through interactive selec-
tion of a MObject (B-2), the user is able to iteratively repeat the be-
fore described step of MObject Set calculation to explore the selected
MObject. As a result a new child MObject Set (B-3) is calculated and
visualized. As one would commonly use different properties as clus-
ter criteria, it is possible to repeat the interactive selection step (B-4)
to calculate another MObject Set (B-5) and finally explore the whole
dataset to find the desired MObjects.

5.3.3 Scaling through Visual Linking

In our visualization all MObjects are rendered in individual frames
of the same size. The MObjects are scaled to best fit their corre-
sponding rendering frame. Our visual linking approach connects all
MObjects along the selection path so that it becomes obvious where a
child MObject is located inside the parent MObject. Furthermore the
scaling of a considered MObject in the hierarchical relationship is rep-
resented. To do so, the transfer function for all MObjects except the
selected MObject in the visualization is changed in a way, that only
the surfaces of the MObjects are shown in grey with a high opacity.
The selected MObject is then shown in all MObjects along the selec-
tion path. Figure 8 illustrates this approach using a parallel MObject
Set visualization with two MObject Sets (A) and (B). When selecting
a child MObject (1) visual linking shows the selected MObject inside
the parent MObject (2) of the parent MObject Set (B).

6 RESULTS AND EVALUATION

The initial design of the MObjects visualization is motivated by a high
demand of material characterizations in the aeronautics industry. Es-
pecially carbon fiber reinforced polymers (CFRP) show a great poten-
tial because of their increased stiffness and strength-to-weight ratio.
As a result of the manufacturing process, CFRP tends to have pores
inside. They can occur as nodular pores or crack-shaped delamina-
tions in the epoxy resin or as long and thin micro pores inside the fiber
bundles. In the following sections we show the local MObjects vi-
sualization including the color-coded homogeneity visualization (see
Section 6.1) as well as the radial (see Section 6.2) and parallel (see
Section 6.3) MObject Set visualization to explore a high number of
individual pores. For the further evaluation we gathered user feedback
from domain specialists through a questionnaire (see Section 6.4). The
results show a CFRP dataset with a size of 1800 x 1600 x 100 voxel
and a porosity of 1.94 %. The computational time including all pre-
processing stages, the calculation of the global MObject and the local

Fig. 8. Illustration of the visual linking approach. After selecting a MOb-
ject (1) in a MObject Set (A), visual linking shows the selected child
MObject inside the parent MObject (2) of the parent MObject Set (B).

Fig. 9. (1) Local MObjects visualization using a high uncertainty filter
σ = 0.9. (2 and 3) Enlarged visualization of two MObjects.

MObjects as well as the cell calculations for the color-coded homo-
geneity visualization was about 17 minutes on an Intel Xeon X5680
workstation with 48 GB RAM. We have integrated the pipeline in
our framework iAnalyse. The MObject calculation and visualization
stages are still non-optimized prototypes. As these prototypes are suit-
able to test the acceptability of our approach using real-world com-
ponents, the major focus was not the optimization at this stage of the
development. With reduced calculation times due to optimization we
expect to be in the range of 1 minute and below which is acceptable in
this application area.

6.1 Local MObjects Visualization

In our local MObjects visualization the CFRP dataset is partitioned
into a 4 x 3 grid of cells. The number of rows and columns in the
grid is calculated automatically depending on the biggest pore extents
in the dataset. We ensure that the MObjects fit into the cells without
overlapping. For each cell a local MObject is calculated and shown
to the user (see Figure 9 (1)). The MObjects can be visualized using
different uncertainty filters, e.g., σ = 0.9. Figure 9 (2 and 3) shows
two enlarged MObjects from (1). As the MObjects’ cores look simi-
lar, there is a homogenous distribution of small individual pores over
the dataset in x direction, whereas big individual pores can be seen
as outliers in (3). These outliers lead to an inhomogeneous porosity
distribution in the specimen. Based on the given partitioning the user
can switch to the comparative homogeneity visualization with color-
coded cells as shown in Figure 10. Without coloring the cells (1) it is

Fig. 10. (1) Visualization of the CFRP dataset. Homogeneity visualiza-
tion of the deviation from the average pore (2) volume, (3) dimension x,
and (4) dimension z in a 4 x 3 grid showing the CFRP dataset in the
background.



Fig. 11. (A) Radial MObject Set visualization of a CFRP dataset showing combinations of the properties shape factor and volume. (B) Parallel
MObject Set visualization of a CFRP dataset showing the selected path and visual linking. (C) Representative mean pores of a CFRP dataset
showing the visual linking visualization (left column) and the MObjects (right column). (C-1 and C-2) Nodular and disc-shaped pores. (C-3 and C-4)
Long and thin micro pores in x and z direction.

hard to gain information about the pore homogeneity. By applying the
color-coding, the user is able to see the homogeneity of one property.
Our visualization shows the deviation of the average pore volume (2),
dimension x (3), and dimension z (4) from the corresponding average
global property. Further properties we can show are the shape factor
and the dimension in y direction. Blue colors show a high negative de-
viation whereas red indicates a high positive deviation. In this example
the homogeneity regarding the pore volume is particularly interesting.
A trend can be seen, where in the left part of the specimen the average
pore volume is significantly lower (2). Related to active thermography
calculations, the homogeneity of the pore dimensions in x and z di-
rection is of interest. Especially the homogeneity of the dimension in
x direction (3) shows cells with a high deviation with respect to each
other. For the homogeneity of the dimension in z direction (4) lower
values in the left part of the specimen are visualized similar to the pore
volume deviation.

6.2 Radial MObject Set Visualization
In the beginners mode the MObject Sets are arranged in a radial layout.
The user can select the desired properties and the number of classes
for the MObject Set calculations. The resulting visualization allows
the user to see all possible combinations between the properties to get
a better overview of the data and the resulting MObjects. Figure 11
(A) shows the radial MObject Set visualization for a CFRP dataset.
The MObject of the whole dataset is shown in the center of the radial
arrangement. The inner circle shows the MObject classifications based
on three shape factor sub-classes. Each of these sub-classes is split up
into two sub-classes according to pore volume. Hence all possible
combinations of pore shape factor and volume are visualized in one
view. Based on this information the user is able to draw conclusions
about the individual pores. Using this detailed pore overview, it is
easier to parameterize the expert mode (see Section 6.3).

6.3 Parallel MObject Set Visualization
The parallel MObject Set visualization shows MObject Sets in a paral-
lel arrangement. The user can interactively explore the MObjects. The
results of a CFRP dataset are depicted in Figure 11 (B) using visual
linking. First the parent MObject is split into three user-defined shape
factor classes (B-1). The three MObjects make up a new MObject Set.
After the selection of the last MObject in this set (B-2), it is split into
two classes based on the dimension in x direction (B-3). This step al-
lows to separate the cross-shaped long and thin micro pores. Finally,
the first class of the new MObject Set (B-4) is split into two classes
based on the dimension in z direction (B-5). We used the parallel
MObject Set visualization to find the representative mean pores in the
CFRP dataset (see Figure 11 (C)). As a result of the manufacturing

process nodular and disc-shaped pores propagate in the epoxy resin
(C-1) and (C-2). Long and thin micro pores occur in x and z direction
due to the twill-weave pattern of the fiber layers (C-3) and (C-4).

6.4 Evaluation Questionnaire
For the evaluation, a questionnaire (see Table 1) was answered by 12
respondents of which make up two groups. The first group consists
of domain experts of a company manufacturing aircraft components,
including non-destructive testing (NDT) practitioners and various en-
gineers of the CFRP production process. They use our visualizations
for gaining new insights into their components in order to draw conclu-
sions about the manufacturing process (MObjects Visualization - Task
1). Furthermore the domain experts use the MObject Set visualization
to explore the pores. The resulting representative mean pores are used
to improve ultrasonic calibration (MObjects Exploration - Task 3).

The second group of respondents consists of active thermography
domain experts. They have a strong demand for a better understand-
ing of the different pores in a CFRP component. Currently geometric
primitives are used for mathematical simulations of a heat conduction
model. Based on the MObjects exploration and the resulting repre-
sentative MObjects, the domain experts take the mean pores of a real
dataset as input for the heat conduction simulations. As their method

Table 1. Summary of the Evaluation Questionnaire

Ta
sk

1 Identification of deviating (not nodular) structures
in a 3D rendering −
in a MObject visualization ±

Ta
sk

2

Pore homogeneity identification of the dataset
in the individual pores visualization ∓
in the local MObjects visualization ±
in the color-coded homogeneity visualization +
Pore homogeneity identification in the cells
in the individual pores visualization −
in the local MObjects visualization ±
in the color-coded homogeneity visualization ◦

Ta
sk

3

Identification of the selected path and the different scal-
ings through visual linking in a parallel MObject Set vi-
sualization

+

Identification of representative pore classifications
in a 3D rendering ∓
in a MObject visualization +

− poor, ∓ fair, ◦ average, ± very good, + excellent



assumes a homogenous distribution of the pores, the homogeneity vi-
sualization of the different pore properties is important (Local MOb-
jects Visualization - Task 2). These new possibilities aim to improve
the simulations and finally the active-thermography method. The ref-
erence methods ultrasonic testing and active thermography only pro-
vide 2D images with lower resolutions. Due to the missing 3D infor-
mation, we were not able to directly compare the MObjects visual-
ization to existing NDT methods. As the common XCT visualization
is a 3D rendering of the dataset, we compare our MObject visualiza-
tions to 3D renderings of segmented pores instead. Until now there
has not been an averaging approach available to visually explore the
characteristics of defects in XCT datasets in 3D.

The questionnaire focuses on the evaluation of the three tasks con-
cerning the MObjects visualization (MObjects Visualization - Task 1),
the homogeneity visualization (Local MObjects Visualization - Task
2), and the MObjects exploration and extraction of representative
MObjects (MObjects Exploration - Task 3) in a dataset. A summary
of the evaluation-questionnaire results is shown in Table 1.

MObjects Visualization (Task 1): Regarding the MObject visualiza-
tion, the experts were shown 3D renderings of individual objects in
isometric and xz views as well as 3D renderings of the corresponding
MObject visualizations. Two different transfer function settings influ-
ence the visual depiction of the uncertainty cloud. In the questionnaire
the respondents were asked whether they can identify deviating struc-
tures in the visualizations. As the used dataset mainly contains nodular
pores, apart from a few elongated objects with a different shape fac-
tor, the respondents were asked to identify deviating structures like
non-nodular outliers. The feedback confirms, that it is easier to find
deviating structures in the MObject visualizations than in the 3D ren-
derings showing the individual objects. This is due to the occlusion
of the individual objects, so that deviating structures are hardly or not
at all seen in a 3D rendering. Considering the answers about the dif-
ferent transfer function settings in the MObject visualizations, a slight
trend is recognizable. Although the outliers can be clearly seen in both
MObject visualizations (σ = 0.15 and σ = 0.9), due to perceptional
reasons the respondents prefer a setting where the uncertainty cloud
clearly separates the core from the outliers (σ = 0.9).

Local MObjects Visualization (Task 2): To evaluate the local MOb-
jects visualization, we compared the visualization of segmented pores
in a CFRP dataset, the corresponding visualization of local MObjects
in a 4 x 3 grid, and the color-coded homogeneity visualization of the
same dataset. The task for the respondents was to find the cells with
lowest, highest positive and highest negative deviation of the pore
properties in the segmented pores and the color-coded homogeneity
visualization. It was nearly impossible for the participants to see the
pore homogeneity in the segmented pores visualization whereas they
were able to properly classify all cells in the color-coded homogene-
ity visualization. Regarding the local MObjects visualization the re-
spondents were asked to find the MObjects with lowest and highest
average pore properties in the dataset as well as the lowest and high-
est pore homogeneity in the cells. Generally the respondents judged
our local MObjects visualization positively for perceiving the pore ho-
mogeneity inside the cells. To convey the pore homogeneity of the
whole dataset across all the cells the color-coded homogeneity visual-
ization was rated as a highly helpful visualization. Especially active
thermography experts gain new homogeneity information out of our
visualization to evaluate and evolve their method.

MObjects Exploration (Task 3): Another part of the questionnaire
addressed the interactive MObjects exploration approach. The respon-
dents rated as high the need of the exploration to find nodular, long
and thin as well as crack-shaped objects. Furthermore they agreed that
the classifications based on the pore volume, the dimensions and the
shape factors are very interesting. There is a slight preference to take
the shape factors as the most important property. For each property the
experts typically split up a MObject into two to five sub-classes. All
respondents were able to identify the selected path in a MObject Set
visualization. The visual linking approach was positively received, as
it allows to see the different scalings of the different MObjects along

the selected path. The last aspect of the evaluation comprises the ex-
ploration of representative mean pores in a CFRP dataset. The re-
spondents were shown a 3D rendering of segmented pores in a CFRP
specimen and the corresponding MObject visualization. They were
hardly able to identify nodular, long and thin micro pores as well as
cracks in the rendering of the segmented pores. On the other hand
they positively valued the MObject visualization where it was easy
for them to identify the different pore classifications. Furthermore we
showed the respondents renderings of MObjects with different pore
classifications. These were found with the MObjects exploration ap-
proach. The respondents agreed that the MObjects convey the typical
pore structures in a CFRP dataset.

Further Feedback: NDT practitioners mentioned that the MObjects
visualization may have considerable practical relevance in future in-
line XCT systems for 100 % testing in quality control. An automatic
MObject evaluation tool may single out components with critical de-
fects.

7 CONCLUSIONS AND FUTURE WORK

A novel method for the visualization and interactive exploration of
MObjects was presented. We calculate MObjects from a set of indi-
vidual objects and visualize them by applying transfer functions. As
the MObjects dataset stores probabilities, the transfer function design
is guided by a user-defined uncertainty filter. The approach includes
the visualization of pore homogeneities as well. Local MObjects are
visualized on a regular grid to show the pore homogeneity in individual
cells. To visualize the pore homogeneity of the whole dataset, a color-
coded homogeneity visualization was implemented which shows the
deviation from the average pore properties. For the exploration with
our MObject Set visualization we proposed a beginners mode in ra-
dial arrangement and an expert mode in parallel arrangement. Besides
the interactive selection of MObjects, we introduced a scaling through
visual linking approach along a selected path. Single MObjects hold
probabilities for each voxel of belonging to the MObject and are vi-
sualized using transfer functions. They can be exported as volumetric
dataset to drive subsequent calculations or simulations.

We have applied our techniques to cases of high practical relevance
in the aeronautics industry. Representative pores of a CFRP dataset
were found during interactive exploration of the MObjects. Based on
these results NDT practitioners calculate the most appropriate ultra-
sonic calibration curve for each component to be tested in quality con-
trol. In active thermography the representative pores serve as input
for the heat conduction simulations to improve the underlying model.
Domain experts of a company manufacturing aircraft components and
active thermography experts evaluated the MObjects approach with a
questionnaire and found it to be a helpful tool with high practical rel-
evance.

Although we focused on the evaluation of pores in this work, our
approach can be used for all kinds of defects in material sciences. In
the future we will apply our methods on cracks, inclusions, particles
and fibers. Currently the number of classes into which a parent MOb-
ject is split up regarding a specific property is user-defined. This is
based on the knowledge of the domain experts as well as norms spec-
ifying the number of partitions for certain properties. For future work
the number of classes, a MObject is split up, can be chosen by an
automatic approach.
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